Задачи и решения к муниципальному этапу Всероссийской олимпиады школьников по астрономии 2017-2018 учебного года

10 класс

Задача № 1.

Параллакс Канопуса (α Киля) равен **10,43** угловых миллисекунды. За сколько лет Земля в своем годовом движении вокруг Солнца проходит путь, равный расстоянию до Канопуса? Орбиту Земли считать круговой.

Решение.

Расстояние до звезды можно найти по формуле

$$d[\Pi K] = \frac{1}{\pi ["]}$$

где d выражено в парсеках, а π — параллакс звезды в угловых секундах. Переведём миллисекунды в секунды и подставим в указанную формулу.

$$d=rac{1}{0,01043}=95,88\ \pi \mbox{к}pprox 96\ \pi \mbox{к}$$

Переведём вычисленное расстояние в астрономические единицы, учитывая, что 1 пк \approx $206\ 265\ a.\ e.$

$$d = 96 \cdot 206265 = 19801440$$
 a.e.

Так как орбита Земли круговая и её радиус равен 1 а.е., то за 1 год Земля проходит расстояние 2π а.е. Тогда путь, равный расстоянию до Канопуса, Земля пройдёт за

$$t = rac{19\,801\,440}{2 \cdot \pi} ext{ a. e./год} pprox 3 \,151\,497$$
 лет

Ответ: примерно за 3 151 497 лет

Задача № 2.

В шаровом звездном скоплении шесть миллионов двести пятьдесят тысяч одинаковых звезд, каждая из которых имеет блеск 23^{m} . Какова видимая звёздная величина всего скопления? Определите расстояние до скопления, если его абсолютная звёздная величина равна -11^{m} (минус одиннадцать).

Решение.

Световой поток от всего скопления в **6 250 000** раз больше, чем от одной звезды. Представим это число в виде

$$6\ 250\ 000 = 6,25 \cdot 100 \cdot 100 \cdot 100$$

Разница в световых потоках в **2,5** раза соответствует **1**^m, разница в световых потоках в **6,25** = **2,5·2,5** соответствует **2**^m, а разница в световых потоках в **100** раз соответствует **5**^m. Значит звёздное скопление на **2+5+5+5=17** звёздных величин ярче одной звезды. Тогда суммарный блеск скопления **21**^m **-17**^m = **4**^m.

Тот же результат можно получить, если воспользоваться формулой Погсона

$$m_1 - m_2 = -2, 5 \cdot lg \frac{I_1}{I_2}$$

Пусть индекс 1 относится ко всему скоплению, а индекс 2 к одной звезде, тогда

$$m_1 - 21^m = -2, 5 \cdot lg \frac{6\ 250\ 000}{1}$$

Откуда

$$m_1 = 21^m - 17^m = 4^m$$

Далее используем формулу, связывающую расстояние с абсолютной и видимой звёздными величинами

$$M = m + 5 - 5 \cdot lg r$$
 [пк]

откуда получаем

$$-11 = 4 + 5 - 5 \cdot lg r$$
 [пк]

и окончательно

$$r = 10^4$$
 пк = 10 кпк

Ответ: 10⁴ парсек или 10 килопарсек

Задача № 3.

Расположение небесных тел, когда одно из них закрывает собой от наблюдателя другое, называется покрытием. В какое наибольшее число раз будет отличаться продолжительность центрального покрытия Луной некоторой звезды? Считать эксцентриситет лунной орбиты равным 0,055.

Решение.

Продолжительность центрального покрытия будет зависеть от углового диаметра Луны. Легко понять, что угловой диаметр Луны в перигее больше, чем в апогее. Продолжительность покрытия можно вычислить по формуле

$$t=\frac{d}{\omega}$$

где d – угловой диаметр Луны, а ω – её угловая скорость. Тогда имеем

$$rac{oldsymbol{t}_{ ext{перигей}}}{oldsymbol{t}_{ ext{апогей}}} = rac{oldsymbol{d}_{ ext{перигей}} \cdot oldsymbol{\omega}_{ ext{апогей}}}{oldsymbol{d}_{ ext{апогей}} \cdot oldsymbol{\omega}_{ ext{перигей}}}$$

Пусть апогейное расстояние от Земли до Луны равно $r_{\rm anore}$, а перигейное - $r_{\rm периге}$. Тогда имеем, что отношение угловых диаметров Луны в перигее и апогее

$$rac{oldsymbol{d}_{ ext{перигей}}}{oldsymbol{d}_{ ext{апогей}}} = rac{oldsymbol{r}_{ ext{апогей}}}{oldsymbol{r}_{ ext{перигей}}}$$

Из второго закона Кеплера следует, что отношение линейных скоростей движения Луны в перигее и апогее

$$rac{oldsymbol{v}_{ ext{перигей}}}{oldsymbol{v}_{ ext{апогей}}} = rac{oldsymbol{r}_{ ext{апогей}}}{oldsymbol{r}_{ ext{перигей}}}$$

Учитывая, что

$$\omega = \frac{v}{r}$$

Получаем отношение угловых скоростей Луны в перигее и апогее

$$rac{oldsymbol{\omega}_{ ext{перигей}}}{oldsymbol{\omega}_{ ext{апогей}}} = rac{oldsymbol{v}_{ ext{перигей}} \cdot oldsymbol{r}_{ ext{апогей}}}{oldsymbol{v}_{ ext{апогей}}} = (rac{oldsymbol{r}_{ ext{апогей}}}{oldsymbol{r}_{ ext{перигей}}})^2$$

Подставляя полученные формулы для отношения угловых диаметров и отношения угловых скоростей Луны в формулу для времён покрытий, получаем

$$rac{oldsymbol{t}_{ ext{перигей}}}{oldsymbol{t}_{ ext{апогей}}} = rac{oldsymbol{r}_{ ext{перигей}}}{oldsymbol{r}_{ ext{апогей}}}$$

Вспомним, что

$$r_{\text{перигей}} = a \cdot (1 - e)$$

$$r_{\text{апогей}} = a \cdot (1 + e)$$

где \boldsymbol{a} — большая полуось орбиты Луны, а \boldsymbol{e} — эксцентриситет этой орбиты. Тогда окончательно имеем

$$rac{oldsymbol{t}_{ ext{перигей}}}{oldsymbol{t}_{ ext{апогей}}} = rac{1-e}{1+e}$$

Подставляем численные значения

$$rac{m{t}_{
m перигей}}{m{t}_{
m апогей}} = rac{m{1} - m{0}, m{055}}{m{1} + m{0}, m{055}} pprox m{0}, m{9}$$

Ответ: примерно в 0, 9 раз

Задача № 4.

Предположительно в ядре нашей Галактики находится черная дыра с массой $4 \cdot 10^6$ масс Солнца. Вычислите её гравитационный радиус (расстояние от центра, на котором вторая космическая скорость равна скорости света), а также среднюю плотность вещества в пределах этого гравитационного радиуса.

Решение.

Вторую космическую скорость для любого тела можно рассчитать по формуле

$$v_{II} = \sqrt{\frac{2 \cdot G \cdot m}{R}}$$

где G — гравитационная постоянная, m и R - масса и радиус тела соответственно. Считая для чёрной дыры вторую космическую скорость равной скорости света c в вакууме, получаем выражение для гравитационного радиуса

$$R_G = \frac{2 \cdot G \cdot m}{c^2}$$

Подставляем численные значения

$$R_{\textit{G}} = \frac{2 \cdot 6,672 \cdot 10^{-11} \, \text{m}^3 \cdot \text{k} \text{\Gamma}^{-1} \cdot \text{c}^{-2} \cdot 4 \cdot 10^6 \cdot 1,989 \cdot 10^{30} \text{k} \text{\Gamma}}{(2,998 \cdot 10^8 \, \text{m} \cdot \text{c}^{-1})^2} \approx 1,18 \cdot 10^{10} \, \text{m}$$

Или если выражать в других единицах

$$R_G \approx 1$$
, $18 \cdot 10^{10}$ м = 1, $18 \cdot 10^7$ км ≈ 0 , 08 a. e.

То есть гравитационный радиус этой чёрной дыры примерно в 5 раз меньше большой полуоси орбиты Меркурия.

Вычислим среднюю плотность вещества в пределах гравитационного радиуса.

$$\rho = \frac{m}{V} = \frac{m}{\frac{4}{3} \cdot \pi \cdot R_G^3} = \frac{3}{4 \cdot \pi} \cdot \frac{m}{R_G^3}$$

А если подставить выражение для R_{G} , получаем

$$\rho = \frac{3 \cdot c^6}{32 \cdot \pi \cdot G^3} \cdot \frac{1}{m^2}$$

Если учесть численные значения постоянных, формула принимает вид

$$ho \ [rac{ ext{K}\Gamma}{ ext{M}^3}] pprox rac{7 \cdot 10^{79}}{(m ext{[K}\Gamma])^2}$$

Вычисляем среднюю плотность

$$\rho = \frac{7 \cdot 10^{79}}{(4 \cdot 10^6 \cdot 1,989 \cdot 10^{30})^2} \approx 1,11 \cdot 10^6 \frac{\text{K}\Gamma}{\text{M}^3}$$

Анализируя формулу для средней плотности, видим, что эта величина обратно пропорциональна квадрату массы чёрной дыры. То есть для чёрных дыр достаточно больших масс можно получить очень малую плотность.

Ответ: гравитационный радиус примерно $1,18\cdot 10^{10}$ м; средняя плотность вещества примерно $1,11\cdot 10^6$ $\frac{\text{кг}}{\text{м}^3}$

Задача № 5.

Астронавты высадились на небольшую шарообразную планету и объехали её на вездеходе по экватору за 10 часов, двигаясь со скоростью 72 км/час. Оцените массу планеты, если известно, что её средняя плотность не превышает плотности Земли.

Решение.

Так как планета имеет форму шара, то длина её экватора равна

$$L = 2 \cdot \pi \cdot R$$

С другой стороны, эта же длина

$$L = v \cdot t$$

где v — скорость движения вездехода, а t — затраченное на объезд время. Приравнивая эти выражения, получаем радиус планеты

$$R=\frac{v\cdot t}{2\cdot \pi}$$

Тогда объём планеты

$$V = \frac{4}{3} \cdot \pi \cdot R^3 = \frac{4}{3} \cdot \pi \cdot \left(\frac{v \cdot t}{2 \cdot \pi}\right)^3 = \frac{v^3 \cdot t^3}{6 \cdot \pi^2}$$

Зная объём планеты и то, что её плотность не превышает средней плотности Земли, получаем оценку массы планеты «сверху»

$$m_{max} \leq \rho_{\oplus} \cdot V = \frac{\rho_{\oplus} \cdot v^3 \cdot t^3}{6 \cdot \pi^2}$$

Подставляя численные значения, получим

$$m_{max} \leq rac{5520 rac{ ext{K}\Gamma}{ ext{M}^3} \cdot (20 rac{ ext{M}}{ ext{C}})^3 \cdot (36000 ext{ c})^3}{6 \cdot 3,14^2} pprox 3,48 \cdot 10^{19} \, ext{K}\Gamma$$

Теперь необходимо оценить массу планеты «снизу». Объезд планеты с определённой скоростью возможен только в том случае, если эта скорость не превышает первую космическую скорость (иначе вездеход просто взлетит). Отсюда следует, что

$$v \leq \sqrt{\frac{G \cdot m_{min}}{R}}$$

где G – гравитационная постоянная, а R и m_{min} – радиус и минимальная масса планеты соответственно. Учитывая, что

$$v = \frac{2 \cdot \pi \cdot R}{t}$$

получаем

$$\frac{2 \cdot \pi \cdot R}{t} \leq \sqrt{\frac{G \cdot m_{min}}{R}}$$

или

$$\frac{2 \cdot \pi}{t} \leq \sqrt{\frac{G \cdot m_{min}}{R^3}}$$

Выражая куб радиуса через объём

$$R^3 = \frac{3V}{4\pi}$$

имеем

$$\frac{2 \cdot \pi}{t} \leq \sqrt{\frac{\frac{4}{3} \cdot \pi \cdot G \cdot m_{min}}{V}}$$

Обе части неравенства положительны, поэтому возводя их в квадрат и проведя некоторые преобразования, получаем условие на минимальную массу

$$m_{min} \geq \frac{3 \cdot \pi \cdot V}{G \cdot t^2}$$

Учитывая ранее полученное выражение для V, окончательно

$$m_{min} \geq \frac{v^3 \cdot t}{2 \cdot G}$$

Подставляем численные значения

$$m_{min} \geq rac{\left(20rac{ ext{M}}{ ext{C}}
ight)^3 \cdot 36000 ext{ c}}{2 \cdot 6,672 \cdot 10^{-11} ext{ m}^3 \cdot ext{K}\Gamma^{-1} \cdot ext{C}^{-2}} pprox 2,16 \cdot 10^{18} ext{ K}\Gamma$$

В итоге масса планеты

$$2,16\cdot 10^{18}\ {
m Kr} \leq m \leq 3,48\cdot 10^{19}\ {
m Kr}$$

Ответ: $2,16\cdot 10^{18}$ кг $\leq m \leq 3,48\cdot 10^{19}$ кг

Задача № 6.

Оцените массу атмосферы Титана, если известно, что величина атмосферного давления у поверхности Титана в 1,5 раза больше, чем величина давления атмосферы у поверхности Земли, а радиус и масса Титана примерно в 2,5 и 44,4 раза меньше радиуса и массы Земли соответственно.

Решение.

Простую, но достаточно точную оценку можно получить, если считать, что вся атмосфера Титана собрана в приповерхностном слое постоянной плотности, равной плотности у поверхности. Тогда давление можно вычислить по известной формуле

$$p = \rho \cdot g \cdot h$$

где ρ – плотность атмосферы у поверхности Титана, g – ускорение свободного падения на его поверхности, h – высота такой однородной атмосферы. Такая атмосфера получится достаточно тонкой, поэтому изменением g с высотой можно пренебречь. Массу атмосферы можно оценить, используя формулу

$$m = \rho \cdot V$$

где V — объём атмосферы Титана. Так как атмосфера достаточно тонкая, то этот объём можно представить как произведение площади поверхности Титана на высоту атмосферы

$$V = 4 \cdot \pi \cdot R^2 \cdot h$$

где **R** – радиус Титана. Тогда масса атмосферы

$$m = 4 \cdot \pi \cdot R^2 \cdot \rho \cdot h$$

Выражая произведение $ho \cdot h$ из формулы для давления, и подставляя в полученное выражение для массы, имеем

$$m=4\cdot\pi\cdot R^2\cdot\frac{p}{g}$$

Учтём, что ускорение свободного падения на поверхности Титана можно вычислить по формуле

$$g=\frac{G\cdot M}{R^2}$$

где G — гравитационная постоянная, а M и R — масса и радиус Титана соответственно.

Тогда окончательно получаем

$$m = \frac{4 \cdot \pi \cdot p \cdot R^4}{G \cdot M}$$

Вспоминая, что по условию задачи

$$p = 1, 5 \cdot p_{\oplus}$$

$$M = \frac{M_{\oplus}}{44, 4}$$

$$R = \frac{R_{\oplus}}{2, 5}$$

Получаем выражение для массы атмосферы Титана через параметры Земли

$$m \approx \frac{6,82 \cdot \pi \cdot p_{\oplus} \cdot R_{\oplus}^{4}}{G \cdot M_{\oplus}}$$

Подставляем численные значения

$$m pprox rac{6,82 \cdot 3,14 \cdot 10^5 \Pi a \cdot (6,378 \cdot 10^6 \text{ м})^4}{6,672 \cdot 10^{-11} \text{ м}^3 \cdot \text{кг}^{-1} \cdot \text{c}^{-2} \cdot 5,974 \cdot 10^{24} \text{кг}} pprox 8,9 \cdot 10^{18} \text{ кг}$$

Реальная масса атмосферы Титана **8**, **7** · $\mathbf{10^{18}}$ кг. Мы ошиблись совсем немного.

Ответ: примерно $8,9 \cdot 10^{18}$ кг

Перечень справочных данных.

§1. Основные физические и астрономические постоянные

Гравитационная постоянная $G = 6.672 \cdot 10^{-11} \text{ м}^3 \cdot \text{кг}^{-1} \cdot \text{c}^{-2}$

Скорость света в вакууме $c = 2.998 \cdot 10^8 \text{ м/c}$

Универсальная газовая постоянная $\mathbf{R} = 8.31 \text{ м}^2 \cdot \mathbf{K} \cdot \mathbf{c}^{-2} \cdot \mathbf{K}^{-1} \cdot \mathbf{M0лb}^{-1}$

Постоянная Стефана-Больцмана $\sigma = 5.67 \cdot 10^{-8} \text{ кг} \cdot \text{c}^{-3} \cdot \text{K}^{-4}$

Масса протона $m_p = 1.67 \cdot 10^{-27} \text{ кг}$

Масса электрона $m_e = 9.11 \cdot 10^{-31} \text{ кг}$

Астрономическая единица 1 а.е. = $1.496 \cdot 10^{11}$ м

Парсек 1 пк = 206265 a.e. = $3.086 \cdot 10^{16}$ м

Постоянная Хаббла H = 68 (км/c)/Мпк

§2. Данные о Солнце

Радиус 695 000 км

Масса 1.989·10³⁰ кг

Светимость 3.88·10²⁶ Вт

Спектральный класс G2

Видимая звездная величина -26.78^т

Абсолютная болометрическая звездная величина +4.72^m

Показатель цвета (B-V) +0.67^m

Эффективная температура 5800К

Средний горизонтальный параллакс 8.794"

Интегральный поток энергии на расстоянии Земли 1360 Bт/м²

Поток энергии в видимых лучах на расстоянии Земли 600 Вт/м²

§3. Данные о Земле

Эксцентриситет орбиты 0.017

Тропический год 365.24219 суток

Средняя орбитальная скорость 29.8 км/с

Период вращения 23 часа 56 минут 04 секунды

Наклон экватора к эклиптике на эпоху 2000 года: 23° 26′ 21.45″

Экваториальный радиус 6378.14 км

Полярный радиус 6356.77 км

Macca 5.974·10²⁴ кг

Средняя плотность $5.52 \, \Gamma \cdot \text{см}^{-3}$

Объемный состав атмосферы: N_2 (78%), O_2 (21%), Ar (~1%).

§4. Данные о Луне

Среднее расстояние от Земли 384400 км

Минимальное расстояние от Земли 356410 км

Максимальное расстояние от Земли 406700 км

Эксцентриситет орбиты 0.055

Наклон плоскости орбиты к эклиптике 5° 09'

Сидерический (звездный) период обращения 27.321662 суток

Синодический период обращения 29.530589 суток

Радиус 1738 км

Масса 7.348·10²² кг или 1/81.3 массы Земли

Средняя плотность 3.34 г ⋅ см⁻³

§5. Физические характеристики Солнца и планет

Планета	Macca		Радиус		Плот-	Период	Наклон	Гео-	Вид.
					ность	вращения	экватора	метр.	звезд-
						вокруг оси	К	аль-	ная
							плоскости	бедо	вели-
							орбиты		чина*
	КГ	массы	КМ	радиусы	г•см ⁻³		градусы		
		Земли		Земли					
	70								
Солнце	$1.989 \cdot 10^{30}$	332946	695000	108.97	1.41	25.380 сут	7.25	_	–26.8
Меркурий	$3.302 \cdot 10^{23}$	0.05271	2439.7	0.3825	5.42	58.646 сут	0.00	0.10	-0.1
Венера	$4.869 \cdot 10^{24}$	0.81476	6051.8	0.9488	5.20	243.019 сут**	177.36	0.65	-4.4
Земля	$5.974 \cdot 10^{24}$	1,00000	6378.1	1.0000	5.52	23.934 час	23.45	0.37	-
Mapc	$6.419 \cdot 10^{23}$	0.10745	3397.2	0,5326	3.93	24.623 час	25.19	0.15	-2.0
Юпитер	1.899·10 ²⁷	317.94	71492	11.209	1.33	9.924 час	3.13	0.52	-2.7
Сатурн	$5.685 \cdot 10^{26}$	95,181	60268	9,4494	0,69	10.656 час	25.33	0.47	0.4
Уран	$8.683 \cdot 10^{25}$	14.535	25559	4.0073	1.32	17.24 час**	97.86	0.51	5.7
Нептун	$1.024 \cdot 10^{26}$	17.135	24746	3.8799	1.64	16.11 час	28.31	0.41	7.8

^{*} – для наибольшей элонгации внутренних планет и среднего противостояния внешних планет.

§6. Характеристики орбит планет

Планета	Большая полуось		Эксцент-	Наклон к	Период	Синодический
			рисит е т	плоскости	обращения	период
				эклиптики		
	млн.км	a.e.		градусы		сут
Меркурий	57.9	0.3871	0.2056	7.004	87.97 сут	115.9
Венера	108.2	0.7233	0.0068	3.394	224,70 сут	583.9
Земля	149.6	1.0000	0.0167	0.000	365.26 сут	_
Mapc	227.9	1.5237	0.0934	1.850	686.98 сут	780.0
Юпитер	778.3	5.2028	0.0483	1.308	11.862 лет	398.9
Сатурн	1429.4	9.5388	0.0560	2.488	29.458 лет	378.1
Уран	2871.0	19,1914	0.0461	0.774	84.01 лет	369.7
Нептун	4504.3	30,0611	0.0097	1.774	164.79 лет	367.5

^{** –} обратное вращение.

§7. Характеристики некоторых спутников планет

Спутник	Macca	Радиус	Плотность	Радиус	Период	Геомет-	Видимая			
				орбиты	обращения	рич.	звездная			
						альбедо	величина*			
	кг	КМ	г/см ³	км	сут		m			
Земля										
Луна	7.348·10 ²²	1738	3.34	384400	27.32166	0.12	-12.7			
Mapc										
Фобос	$1.08 \cdot 10^{16}$	~10	2.0	9380	0.31910	0.06	11.3			
Деймос	1.8·10 ¹⁵	~6	1.7	23460	1.26244	0.07	12.4			
Юпитер										
Ио	$8.94 \cdot 10^{22}$	1815	3.55	421800	1.769138	0.61	5.0			
Европа	$4.8 \cdot 10^{22}$	1569	3.01	671100	3.551181	0.64	5.3			
Ганимед	$1.48 \cdot 10^{23}$	2631	1.94	1070400	7.154553	0.42	4.6			
Каллисто	$1.08 \cdot 10^{23}$	2400	1.86	1882800	16.68902	0.20	5.7			
			Ca	турн						
Тефия	$7.55 \cdot 10^{20}$	530	1.21	294660	1.887802	0.9	10.2			
Диона	$1.05 \cdot 10^{21}$	560	1.43	377400	2.736915	0.7	10.4			
Рея	$2.49 \cdot 10^{21}$	765	1.33	527040	4.517500	0.7	9.7			
Титан	$1.35 \cdot 10^{23}$	2575	1.88	1221850	15.94542	0.21	8.2			
Япет	$1.88 \cdot 10^{21}$	730	1.21	3560800	79.33018	0.2	~11.0			
Уран										
Миранда	6.33·10 ¹⁹	235.8	1.15	129900	1.413479	0.27	16.3			
Ариэль	$1.7 \cdot 10^{21}$	578.9	1.56	190900	2.520379	0.34	14.2			
Умбриэль	1.27·10 ²¹	584.7	1.52	266000	4.144177	0.18	14.8			
Титания	$3.49 \cdot 10^{21}$	788.9	1.70	436300	8.705872	0.27	13.7			
Оберон	$3.03 \cdot 10^{21}$	761.4	1.64	583500	13.46324	0.24	13.9			
Нептун										
Тритон	$2.14 \cdot 10^{22}$	1350	2.07	354800	5.87685**	0.7	13.5			

^{* –} для полнолуния или среднего противостояния внешних планет.

§8. Формулы приближенного вычисления

$$\sin x \approx \operatorname{tg} x \approx x;$$

$$\sin(\alpha + x) \approx \sin \alpha + x \cdot \cos \alpha;$$

$$\cos(\alpha + x) \approx \cos \alpha - x \cdot \sin \alpha;$$

$$\operatorname{tg}(\alpha + x) \approx \operatorname{tg} \alpha + \frac{x}{\cos^2 \alpha};$$

$$(1 + x)^n \approx 1 + n \cdot x;$$

 $(x \ll 1, y$ глы выражаются в радианах).

^{** -} обратное направление вращения.