Муниципальный этап Всероссийской олимпиады

Липецкая область

Физика

2017 – 2018 уч. год

8 класс

Уважаемые участники олимпиады!

Вашему вниманию предлагаются 4 задачи, требующие развернутого ответа.

Время на решение задач – 3 часа мин (180 минут).

Внимательно прочитайте каждую задачу. Начинайте решать на черновике. Если есть возможность проиллюстрировать решение рисунком - сделайте это. Учтите, что черновик не проверяется, поэтому все важные элементы решения перенесите на чистовик (в том числе и рисунок).

Не забудьте на черновике написать сверху «ЧЕРНОВИК», а на чистовике там же «ЧИСТОВИК». Рядом со словом «чистовик» нужно оставить место для шифра Вашей работы. Помните, ни на чистовике, ни на черновике не должно быть Вашей фамилии, имени, каких-либо иных пометок, указывающих на принадлежность работы.

Если какое-то задание вызывает у вас затруднение, пропустите его и постарайтесь выполнить те задачи, для которых Вам ясен путь решения. К пропущенным заданиям Вы можете вернуться, если у вас останется время.

На чистовике оформляйте задания в том порядке, в котором они даны.

Задача №1. Гена и Чебурашка.

Чебурашка, идя по эскалатору вверх, поднялся за 45 с. Его друг Крокодил Гена, стоя на эскалаторе, поднялся наверх за 1,5 мин. Встретившись наверху, Гена печально сказал, что забыл внизу у эскалатора чемодан. «Гена, я принесу твой чемодан» - ответил Чебурашка и побежал вниз по эскалатору в 4 раза быстрее, чем шел. Сколько времени ждал крокодил Гена свой чемодан. Учтите, что бежать обратно с чемоданом Чебурашка не мог?

Возможное решение.

- 1) Обозначим v_3 скорость эскалатора (движения Гены), v_4 скорость идущего Чебурашки.
- 2) Длина эскалатора $v_2 t_2 = (v_2 + v_3)t_3$ (3 балла)
- 3) При движении Чебурашки вниз, направление движения эскалатора вверх.

Следовательно, $v_2 t_2 = (4v_4 - v_2)t$ (3 балла)

(Система уравнений может иметь и другой вид!)

- 4) Решение полученной системы уравнений даст $t: t = 30 \, c$ (2 балла)
- 5) Тогда, время ожидания есть t = t + tэ = 30 + 90c= 120 с (2 балла)

Ответ: t = 2 мин.

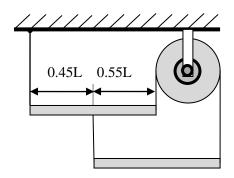
Задача №2. Поезд и электричка.

Поезд едет с постоянной скоростью v_0 . По соседним путям его опережает электричка, скорость которой $v_1=80$ км/ч. Машинист поезда отметил, что он проехал мимо электрички за $t_1=2$ минуты. На обратном пути данные электричка и поезд опять встретились. На этот раз по часам машиниста оказалось, что время прохождения электрички мимо поезда равно $t_2=30$ с. Какова скорость v_0 поезда?

Возможное решение:

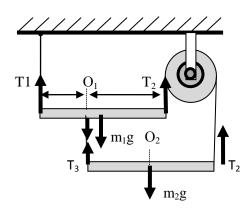
Пусть l — длина длинного поезда.

Тогда, в случае движения электрички и поезда в одном направлении $l = t_1(v - v_0)$. (3 балла)


Во втором случае поезд и электричка едут в разных направлениях, поэтому $l=t_2(v+v_0)$. (3 балла)

Приравнивая полученные выражения для l и выражая из них искомую скорость находим*

$$v_{0}=vrac{t_{1}-t_{2}}{t_{1}+t_{2}}$$
=48км/ч (4 балла)


Ответ: 48км/ч.

Задача 3. Система в механическом равновесии

Система состоит из двух однородных стержней, трех невесомых нитей, одна из которых перекинута через неподвижный блок. Трение в оси блока отсутствует, а все нити вертикальны. Масса верхнего стержня $m_1 = 0.5~\rm kr$. Определите массу m_2 нижнего стержня.

Возможное решение.

Расставим силы, действующие на каждый из стержней (+2 балла).

Запишем правило рычага для стержней относительно точек O_1 и O_2 . O_2 – центр масс нижней балки. Так как система находится в равновесии, то:

 $T_10.45L = T_20.55L$ - $m_1g0.05L$, $T_3\ell = T_2\ell$. Здесь 2ℓ - длина нижнего стержня. (+ **3** балла).

Кроме этого, так как стержни в равновесии, то равнодействующая сил, действующих на них равна нулю:

верхний стержень $T_1+T_2=m_1g+T_3$, $T_1=m_1g$;

нижний стержень $T_3 + T_2 = m_2 g;$ $2T_2 = m_2 g.$ (+3 балла)

Окончательно получаем $m_2 = 0.909 \text{ кг} \ (+2 \text{ балла})$

Ответ: масса второго стержня 909 г.

Задача 4. Лед и вода.

В калориметре с водой плавает однородный куб изо льда массы m=1 кг. Система вода-лед находится в тепловом равновесии. Сколько литров воды при температуре t = 40 0 C нужно добавить в калориметр, чтобы объём льда выступающий из воды уменьшился в n = 3 раза? Удельная теплота плавления льда λ = 330 000 Дж/кг, удельная теплоёмкость воды $c_{\text{в}}$ = 4200 Дж/(кг 0 C).

Возможное решение:

Пусть в воде плавает кусок льда массы m, при этом над водой находится часть его объёма V. Общий объем льда равен $V_0=m/\rho_{_{\pi}}$. Часть льда, погруженная в воду имеет объем $V_{_{nozp}}=V_0-V$. (2 балла)

В состоянии равновесия $\rho_{\scriptscriptstyle s} V_{\scriptscriptstyle nozp} g = m g$, откуда, согласно вышеуказанным соотношениям получаем

$$rac{
ho_{_{\it s}}}{
ho_{_{\it n}}}m-
ho_{_{\it s}}V=m\,, \quad V=rac{
ho_{_{\it s}}-
ho_{_{\it n}}}{
ho_{_{\it n}}\cdot
ho_{_{\it s}}}m\,.\,$$
 (3 балла)

Таким образом, уменьшение объема пропорционально уменьшению массы льда. Чтобы уменьшить в три раза выступающий объем необходимо в n=3 раза уменьшить кусок льда. Теплая вода, подлитая в калориметр остывает до $t_0=0^0$ С и одновременно частично плавит лел

Из условия теплового баланса

$$(m-m/n)\lambda = m_{e}c_{e}(t-t_{0})$$
 (3 балла)

Откуда выразим и рассчитаем массу подливаемой теплой воды.

$$m_{_{\! g}} = rac{n-1}{n} rac{m \lambda}{c_{_{\! g}}(t-t_{_0})} pprox 0,76 \; \kappa {\it c}. \; (2 \; {
m балла})$$

Ответ: 0.76 кг.